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Spatiotemporal properties of diffusive systems with a mobile imperfect trap
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We study analytically a one-dimensional system initially uniformly filled with diffusing partiéleand a
single imperfect mobile trapy initially located at the originx=0. For arbitrary values of diffusion constants
D, andD+, and any trapping rate constavit we calculate exactly the total rate of trapping as well as the
asymptotic concentration &f's atx=0. ForD ,= D+ we also analytically derive the local rate of trapping and
the concentration oA’s at any pointx. Characteristic length scales and extensions to higher dimensions are
also discussedS1063-651X98)04701-]

PACS numbgs): 05.40:+j, 82.20.Hf, 02.50-r

I. INTRODUCTION fect trapping and no trapping, we also examine the role
played by another of Smoluchowski’'s assumptions that reac-
The standard reaction rate theory for diffusion-limited el-tion at the trap is inevitable.
ementary reactions of typd+B—C or A+B—B is based Our study extends the well-examined case ofimmo-
on many simplifying assumptiod4—3]. In Smoluchowski's  bile, perfect or imperfect tra5,7—11 or traps[11-13.
approach one assumes tBespecies to be so diluted that the However, due to mathematical complexity, only a few re-
system can be considered as consisting of ordinglepar-  sults related to the case afiobile traps are available, and
ticle B surrounded by a swarm of diffusing particlds = most of them deal with the problem of determining the sur-
Moreover, theB is assumed to be @mmobilesphere acting vival probability of mobile particlesA placed among ran-
on the surrounding, freely diffusing pointlike particlasas a  domly distributed diffusing trapgl4]. An interesting model
perfect tragi.e., upon collision of ar with the trap reaction with a variable number of mobile traps was recently studied
is certain to occyr The reaction rate is computed from the by Sachezet al. [15]. In addition to this, the role of the
flux of A’s into the sphere. The case where the diffusionA+T—T reactions with mobile trapg in the diffusion-
constantD , andDg of A's andB'’s, respectively, are non- limited fluorescence quenching in liquids was investigated
zero is then treated by the concept of the relative diffusiorby Lianos and Argyraki$16].
constantD’ =D ,+ Dy applied to the above-mentioned sys-  The paper is organized as follows. In Sec. II, starting from
tem with an immobile trafB. Although this theory was later a discrete description, we define the model in the continuous
analyzed and improved by many researclifasreviews see formalism. In Sec. lll, using a coordinate system in which
[1-3]), it has not been rigorously solved yet, and confidencdhe trap is at rest, we calculate rigorously the total rate of
in it is based mainly on its agreement with a number oftrappingR(t) and the concentration of particlés at a dis-
experiment$2]. It is therefore important to examine physical tancez from the trapar(z,t). These calculations are carried
effects associated with various assumptions this simplifie@ut for arbitrary values o¥, D, D4, z, andt. In Sec. IV
theory is founded on, especially after it was demonstratedave return to the laboratory coordinate system in which both
[4,5] that in restricted(i.e., low-dimensional or disordered T andA’s are mobile. Using it we derive formulas for the
geometries Smoluchowski’'s theory must be modified to aceoncentratiora(x,t) of particlesA and the local reaction rate
count for the self-segregation of the reactants. R(x,t). The key quantity employed to compuaéx,t) in this
In this paper we investigate a one-dimensional system ifimit is f(x,t|y), the conditional concentration of particlés
which there is asingle diffusing imperfectrap (henceforth  at sitex provided that at the same timehe trap is located at
we shall denote it by) surrounded by many diffusing par- y. We calculate its explicit asymptotic form for any values of
ticles A initially uniformly filling up the whole available Dy andD,. We derive a general expression fafx,t) for
space. Such geometry, with bolh and A’'s mobile, was D =D+, and find its form ak=0, the initial location of the
already investigated numerically by Schoonoetral. [6], trap, for arbitrary values of diffusion constants. We prove
who focused on the problem of determining the asymptotidhat in the long-time limita(x,t) converges to aonstant
properties of the distance between the trap and the nearegesitivevalue depending only oB; andD,, which means
neighbor particléA. In the present study, in turn, we concen- that if both the trapl and particlesA are mobile, the trap-
trate on examining spatiotemporal properties of such sysping becomes inefficient. In Sec. V we present results of our
tems. We study analytically two problems: what is the timenumerical simulations of a discrete model, which turn out to
evolution of the mean concentration Afs at any pointx, be in excellent agreement with our theory derived for con-
and what is the reactiofor trapping rate at timet. We  tinuous space and time. In Sec. VI we investigate asymptotic
determine both the local and total rate of trapping, which weproperties of the depletion zone formed between the mobile
denote byR(x,t) andR(t), respectively. Moreover, defining trap T and particlesA. Finally, Sec. VIl is devoted to con-
the trap absorptivityy as a parameter ranging between per-clusions.
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Il. THE MODEL especially when\; and\ 5 are incommensurate. Therefore,
Ithough discrete formulation of the problem is directly re-
ated to many physical phenomena, it is practically intrac-

table analytically. However, as we expect the reaction term

Consider a one-dimensional lattice with a lattice constan
Aa. At time t=0 a single trapl is placed atx=0, and a

swarm of diffusing particle# is uniformly distributed at the to be proportional tof for x=y and vanish ax#y, we

lattice sitesx;=j\a, j=*1,%2,..., sothat A's can be . . :
] A ] ] [}
found on both sides of the trap. The initial concentration oeonclude that the equation fdi(x,tly) in the continuous

particlesA will be denoted bypo. The evolution of the sys- formalism, which is more amenable to rigorous, analytical
) ; 4 methods, takes on the form
tem is governed by the following rules. At subsequent inter-
vals 7 each particleA, as well as the traf, performs a
random jump. The jump length of particlésis equal to the — =
lattice constank 5, and so their locations are limited to the at
lattice sites. However, because we want to be able to con- ) ) .
sider systems with arbitrary values of the rafig/D,, and ~WhereV is the trapping rate constant ranging from(fio
since diffusion constants are directly related to the jumpirapping to « (perfect trapping Once we have computed
lengths, we assume that the jump length of the Fapr,  T(Xtly), the expected concentratiax,t) of particlesA at
can assumanynonnegative value. Although the same effect(X.t) can be calculated from
could be achieved by a physically more realistic assumption .
that the trapl and particleA have (.di.ffer_ent jump rates and a(x,t)=f f(x,t
the same jump lengths, such modification would lead to un- —
necessary complications in both analytical and numerical
analyses of the problem; we expect the long-time behavior of Note that although we study a one-dimensional system,
the system to depend on the values of diffusion constant®ur mathematical treatment is carried out in a two-
but not on the microscopic details of the jumps. We alsadimensional space, witk andy treated asndependenvari-
assume that particles do not interact among themselves in ables and the trapping occurring along the inex. As we
any way, so it is possible to find many of them at the sameshall also work in two different coordinate systems, in order
site at a time. However, upon contact with the trap, particleo avoid confusion we adopt a convention thaalways de-
A may react with it and be removed from the system. Thenotes positions of particle, y refers to the position of the
reaction probability will be denoted by (0<x<1). The case trap T, andz denotes the relative distance between the trap
k=1 corresponds td@ being a perfect trap, and=0 to the  and particlesA; both x andy are used only in a laboratory
absence of reaction. We assume that the reaction is the onfgference system where bothandA’s are mobile, whereas
interaction betweei andA’s. Therefore, fork<<1, notonly  zis used only in the coordinate system in which the trap is at
can particles and the trap coexist at the same lattice site, bu@st.
it is possible for them to jump over each other without any We expect both formalisms, the continuous one and the
interaction. This assumption implies also that the motion ofdiscrete one, to give the same results in the long-time limit.
the trap is independent of the locations and velocities ofAs we will show below, in this limit the solutions of Eq&2)
particlesA. and (3) become independent of and converge to those
To investigate the evolution of this system we introduceobtained in the limitV—o, unlessV=0. Similarly we ex-
the conditional concentration of particlds, f(x,tly), de- pect that the values df(x,t|y) in the discrete formulation of
fined as the expected number Afs that at timet can be the problem asymptotically converge to those witk1,
found at sitex provided that at this time the mobile trdpis  unlessk=0. Presumably there is no direct relation between
located aty. In the absence of reaction, i.e.xi#y or k=0,  other values ok andV.
the master equation reads In the next two sections we shall concentrate on solving
the continuous problem with the initial state given by

ot D a2f+D 7t V&( )f (2
[E— —— X_ y
AL TO_’y2 y

y)dy. ()

1
fixt+ T|y):Z[f(x_)\Aatly_)\T)+f(X_)\Avt|y+)\T) f(x,t=0ly)=pod(y), 4

FF(XH ALY = A) + F(XH XAty +A7)]. which corresponds to the uniform distributionA, and the
trap located at the origin. We will also present results of
) computer simulations of the discrete model, which will en-

able us to compare the results obtained for the two different

This equation expresses the fact that on average only half ¢fogels at short times and to investigate the transition of the
A’s from x—\, or x+ A, Will move in a single time step yiscrete system to the long-time limit.

to x, and only in half of the systems in the ensemble will
their motion be accompanied by the tra@rriving aty from
Y—N7 Ory+At.

In the long-time limit Eq.(1) can be approximated by the  The reaction rate at the trap can be calculated most easily
standard diffusion equation with coefficieds=\2/27 and  in the coordinate system in which the trap is at rest. Consider
Da=\2/27. However, forx=y and«x>0 one must add to it now such a coordinate system with the initial state made up
an appropriate term that will account for the reaction at theof only oneparticle A located at a distancg, from the trap.
trap. It is very difficult to write such a term precisely in the Let p(z,t) denote the probability of finding it a at timet.
discrete formalism for arbitrary values aff, N\, and 7, Because in this reference systénperforms a random walk

IIl. COORDINATE SYSTEM WITH THE TRAP AT REST
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with the relative diffusion constar®’=D++D,, and can
be trapped only upon arriving a=0, the evolution of
p(z,t) is governed by an analog of E):

ap(z,t) . 3°p(z,t)
ot - [922 B

Vé(z)p(z,t). (5)

This equation was already usgti7,1§ to study particles
diffusing in a one-dimensional system in the presence of i
single,immobile imperfect trap located at the origin of the
system ¢=0), and the explicit form op(z,t) subject to the
initial condition p(z,0)= §(z— zy) was found to be given by
[18]

1 (z2—20)?
z,t)= exp —
p(z.1) 47Dt p( 4D't
h (12| +zo])? 2|+ 2o
——exp ————|F| hyD't+
2 p( 4Dt JAD't
(6)

whereF (X)=exp)erfc(x), erfc)=2m 2 exp(— %) dy,
andh=3V/D’. Notice now that due to linearity and homo-
geneity of Eq.(5), its solution for arbitrary initial conditions
can be obtained as the superposition of solutions of (gpe
After some algebra we thus conclude that if partiodfesre
initially uniformly distributed in the system with some con-
centrationpg, then at timet their concentratiom(z,t) mea-
sured in the reference system of the trap is given by

erf(

|

v4D't

aT(th) = Po

e |Z]
+ex F{ hyD't+ 7
p(4D't JaD't @

In the limit h—oo, which corresponds t&—«, we thus
2|

have
J4(Dr+ DA)t)'

An interesting feature of Eq(7) is that the limith—~ is
mathematically similar ta—o with z/\t fixed, and both
yield the same result8). Consequently, in the long-time
limit, for any finite reaction rat&/, the profile of particleg\
in the reference system of the mobile trap eventually ap
proaches that of the perfect trap.

The immediate consequence of E) is that the ex-
pected numbeM (t) of particlesA that have reacted by time
t is given by

8

ar(z,t) = poerf

M(t)= J:[aT(z,O) —ag(z,t)]dz

=2po[h " IF(hyD')+2D't/m7—h"1]. (9)

For the perfect trapH{— ) or in the long-time limit we have
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FIG. 1. The total rate of trapping(t) for h— (solid line),
h=0.5 (dot-dashed ling andh=0.01 (dashed ling plotted using
Eq. (11). Other parameters ai@,=D1=py=1.

M(t)=4poym H(D1+Dp)t.

Hence the total trapping rate at tinte R(t)=dM(t)/dt,
reads

(10

R(t)=2hp,D'F(hyD't)=Vay(0,t), (11
which asymptotically simplifies to
D1+Dju
R(1)=2po \/ ——— (12)

The above formulas rigorously confirm the conjecture of
Schoonoveret al. [6] that asymptoticallyM (t)~t*? and
R(t)~t~ Y2 and are consistent with the results of R
obtained for the particular cader=0. The plots ofR(t)
obtained forD,=D:=1, ppy=1, and h=0.01, 0.5, and
h—o are presented in Fig. 1. Note that initially
R(t)~2hpoD’, andR(t) converges to the form given in Eq.
(12) for t=1/(h°D").

IV. LABORATORY COORDINATE SYSTEM
A. Transition to the long-time limit

Although it is possible to write down the rather compli-
cated propagator for EQR), integrals that must then be com-
puted to evaluaté(x,t|y) or a(x,t) cannot be worked out in
a closed form except when one of the diffusion constants
vanishes.

It is possible, however, to derive in a closed form the
long-time asymptotics of (x,t|y) for any values o, D+,
andD, . To this end notice that the rata(x,t)/pg is dimen-
sionless an®+/D 4, x/\/D+t, andVt/D are the only mu-
tually independent dimensionless combinationsof, D+,
D4, andV. Thereforea(x,t) must assume the form

a(x,t)=poF(D1/Da,x/D+t,V\t/D7) (13
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for which the limits V—o and t—o, x/\t=const are

equivalent. Therefore, to investigate the long-time behavior

of the system described by E(R) with any nonzeroV it
suffices to concentrate on the limiting cage-« of the

perfect trap, which we shall do henceforth. This scaling form

reveals also two important propertiesatfk,t) atx=0. First,
a(x,t)/a(0,t)—1 ast—oo, for anyx. Second, in the limit of
the perfect trapV—x, a(0,t) must be independent af

Later we shall confirm these conclusions by explicit calcula-

tions carried out for the cad@,=D~.

B. Reformulation of the problem

If V—o, upon contact with the trap, particlésinevita-
bly react. Therefore, the problem of solving E8) reduces

in this limit to the one of solving the standard diffusion equa-

tion
a_f:DAa_%‘+DTﬁ (14)
ot ax? ay?
with the boundary condition
x=y=f(x,t|ly)=0 (15)

imposed by the instantaneous reactioxaty.
Because the reaction renders the solutions of #d)

nonanalytic along the ling=x, it is convenient to solve Eqs.

(14) and (15) with the initial state composed of particlés
uniformly distributed with concentratiopy only on a half-
line x>0,

f1(x,t=0[y) = poH(x) 3(y), (16)

where H(x) denotes the Heaviside step function, and weNote that in accordance with the method of images, the sec-

added the index “1” tof to distinguish it from the solution
obtained for the full initial stat€4), which will be given
below.

Equations(15) and(16) imply

x<y=T;(xtly)=0, (17)
so that Eq(3) can be rewritten as
X
ax= [ faxtlysay, 18

wherea; (x,t) denotes the concentration Afs at (x,t) for
the initial distribution(16).

C. The form of f,(x,t]y) for x>y

AssumingD+, D,>0 we can symmetrize the form of Eq.
(14) by replacingy with a new variable

y=y\Da/Dr. (29
Now Eq. (14) takes on a simpler form,
o, Pt T,

and the initial and boundary conditions turn into
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F1(x,t=0[y) = potan(a)H(x) &(y) 2D
and
y=xtan@)=T;(x.t|y)=0, (22
respectively, wherex is defined through
tan(@)=\DA/Dr. (23)

Equation(20) with the “half-line” initial state (21) and
“absorbing” boundary condition22) can be solved by the
method of image$19]. The solution reads

FLHY)=B(X,Y,1) — D(C1x+Coy,Cox—C1Y 1),  (24)

where

(XY=

4J— p<4DAt) ( JJTXM) 29

denotes the solution of Eq&0) and(21) withouttaking into

account the boundary conditiai22) imposed by trapping,
and c,; and c, are some constants related Do and Dp

through

_ _ Dy—Da
C1=C092a)= D +D,’
VD1Da

Cr,=Sin(2a) = 2DT+DA. (26)

ond term on the right-hand side of E(4) is simply the

image ofED(x,y,t) rotated by the angled®2around the origin
of the x-y plane.
Upon return to the original variables we come to

f1(x,tly)=®(x,y,t)

—d(cix+(1-cq)y,(1+cy)x—cyy,t), (27
where
B(X,y 1) =— _y2> fc{ —* ) (28)
X = .

Equation (27) was derived for nonzero diffusion con-

stants. One can easily verify that fBy=0, D,>0
fY) =pod(y)er| ———|H(X), (29
x,tly)= er X),
1 y pooly \/m
and forD,=0, D1>0
f1(x,tly)= pOH(X)-ex _y2) ex;{ﬂ
= Dt 4Dt 4Dt )]
(30)
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D. Concentration profiles and the local trapping rate 0.10 . . . ; .
Having obtained the form df;(x,t|y), we can now insert
Eqg. (27) into Eqg. (18), and compute,(x,t). However, due |
to the form of the upper limit in Eq(18), a;(x,t) can be 0.08 1
investigated analytically only whed=D,, which implies
c,1=0. The explicit form ofa;(x,t) for this case reads 0.06 - i
s 0
(x,1) - f*(— &) 2 p—&ierfa - &) |, (3D 5
a;|(x,t)=—pg| erfc(— &) — —=exp(— &)ierfa — §) |, <,
! 4o Jm s 0.04 1
whereierfc(z) = [Serfc(n)dy = 7 Y2exp(2)—zerfc(z),
and 0.02 + ]
&=x/\4D+t. (32 . , .
000 = - = 0 2 3 6
. . 10 10 10 10 10 10 10
The mean local rate of trappin&;(x,t), is equal to the D./D
average number of particlésthat are being trapped at t), AT
and is defined through FIG. 2. The average relative concentration of partiéieat the
origin, a;(0,t)/pg, as a function oD, /D, plotted using Eq(36).
da(x,t) d%ay(x,t) The maximal value is 1/4 1/27~0.09.
T~ DA 5 —Ruxb). (33
X E. Particles A on both sides of the trap
Using Eq.(31) its explicit form forD+=D, is found to read We can now generalize our results for the initial condition
(4) made up of particle?A uniformly distributed on both
1 po sides of the trap simply by using the principle of superposi-
Ry(x,t)= ﬁ T exp — £2)ierfo — ). (34 tion, which implies that for any values @, andD+:
aw
_ _ o f(x,tly) = fa(x,t[y) +f1(=x,t[—y), (37
The scaling plot oR;(x,t) will be given in Sec. IV E below.
Another interesting feature of the system is the depen- a(x,t)y=a;(x,t)+a;(—x,t), (39
dence ofa;(x,t) at the origin k=0) on the values of the
diffusion constant® andD,. Using Egs.(18), (27), and R(x,t)=Ry(x,t) + Ry(—Xx,t). (39

the integral
Explicit forms of a(x,t) andR(x,t) for Do=D+ can be
o 1 found using Eqs(31) and (34), respectively. In Fig. 3 we
f exp— nz)erfc(an)dn:\/—; arctail/a) (35  present a scaling plot d®(x,t) and Ry(x,t) for Do=D7.

0 Ri(x,t) reflects the asymmetry of the initial conditi¢h6).

we find that
004 L] L ¥ L} ¥
pol1l 1 Dr+Dy DT—DA)
a1(0,t)=—=| = — — arctan ———||. (36)
R A M PYCon

We can see that the concentration of partidest the origin

is independent of timeFollowing our dimensional analysis
we conclude that this rather surprising effect can be observe
only in the limit of the perfect trap. In a more realistic case of
systems containing an unperfect trap we expect ahéd,t)
would depend on time, decreasing frgrmgp att=0, and ap-
proaching the above result &s»%. In Sec. V we present
simulation data for a discrete model that show that in this
case Eq.36) is valid only in the long-time limit. Another
interesting feature of,(x,t) given by Eq.(36) is that it
drops to 0 only if eitheD; or D, goes to 0. Moreover, it "
actually depends only on the ratid, /D of the diffusion x/(4D,t)

constants, attains the maximal valgp,(; — 1/m)~0.0%y FIG. 3. The scaling plot of the local trapping rate as a function
for Dy=D,, and is not sensitive to interchanging the valuespf ¢=x/./4D+t for D,=D; and two different initial conditions.
of Dy andD,. In Fig. 2 we present the semilogarithmic plot The solid line represen&(x,t)t/p, [full initial condition (4)] and

of a;(0,t)/pg, computed from Eq(36), as a function of the dashed one shovi®(x,t)t/p, [half-line initial condition(16)].
DA/Dry. x=0 is the initial location of the trap.
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FIG. 4. The average concentration of partickeseen from the
reference system attached to the trap at timd.C® (circles, 10*
(squarey and 18 (diamond$. The parameters ar®{/D =5,

FIG. 5. The average concentration of partickesn the labora-
tory coordinate system. The parameters Bre/Dp=1, py=0.8
and L=5001. The solid lines were computed from E¢38) and

po=0.8 and L=10001. The solid lines were computed from (31). Note the constant value @f(x,t) at x=0. Ast—o, it be-

Eq. (8).

V. COMPUTER SIMULATIONS

comes the value dd(x,t) for

any x.

VI. CHARACTERISTIC LENGTH SCALES

To examine the properties of discrete systems we per- A number of recent papers have been devoted to the prob-
formed numerical simulations based on the cellular-automatigm of finding a quantitative description of the self-
model of diffusion[20]. In our approach , is fixed, but the segregation observed in diffusion-limited bimolecular reac-
trap can perform off-lattice jumps of any length, hence  tons [21,23. In analogy with the Smoluchowski
any value ofD1/D 4 can be studied in simulations. This goal approximation one can try to |nv¢st|gate a simplified prop-
is achieved by storing information about positions of par—lem.Of segregation betweep a single trap anc{ surround_lng
ticles using integer arithmetic for particlels and floating- particlesA. Three characteristic measures of this separation

. X . . .2 were suggested, but explicit calculations were performed
point arithmetic for the mobile trajp. We used the full ini- 99 b P

tial condition (4) with the initial concentrationy=0.8 and only for the case where the trap is immobile.
the probability of reactiock=1. The value oD+ /D, varied
from 0.1 to 10; we also made additional runs f0r=0
(immobile trap, andD ,=0 (immobile particlesA). The lat-
tice sizeL varied from 5001 foD{/D<1 to 12 001 sites
for D1/D,=10. The results were averaged over 31 000 in-
dependent runs.

The concentration of particle& as seen from the refer-
ence system attached to the mobile trag(z,t), is depicted
in Fig. 4 for timest=10% 10* and 10, and D1/D,=5.
This corresponds tat= /5, i.e., to the trap performing off-
lattice jumps. The solid lines were computed using @Bg.A
similar plot of the concentration of particlésin the labora-
tory coordinate system, fdd/D,=1, is shown in Fig. 5;
here the solid lines were computed from E(8) and (31).

In both cases the agreement between the continuous thea
and the discrete simulations is excellent for all times.

The difference betweear(z,t) anda(x,t) is most pro-
nounced at the origin. Whila1(0,t) asymptotically goes to
0, a(0;t) converges to a positive value. Figure 6 shows
a(0t) as a function of time. We can see that initially it

One of these lengths, the so callédlistance, is defined
[8] as the distance from the trap to the paiptat which the

a(0,¢0)

0.20

0.15

0.10

0.05

exhibits sharp fluctuations, caused by the discreteness of the -\ ¢ The average concentration of partioleat the origin of
system, but quickly approaches the asymptotic value Of,e system as a function of tinte The circles represent the resuits

A . . of numerical simulations, and the dashed line corresponds to the
represented by the dashed line. Simulations performed faheoretical value 8;(0t)~0.1404 computed from Eq36). The
parameters arB; /D=2, po=0.8, andL=7001.

2a,(0,t)~0.1404, as predicted theoretically in E§6) and

other values oD /D, gave similar results.
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concentrationat(z,t) of A’s is equal to a given fraction VII. DISCUSSION AND CONCLUSIONS

0 (0<6<1) of its bulk value. Another one, the characteristic
minimum distance,, is defined[23] by requirement that
on average there should be exactly one particlat a dis-
tancez=x,, from the trap,

We have studied the behavior of a one-dimensional sys-
tem initially uniformly filled with diffusing particles\, and a
single diffusing trapT placed atx=0. We found that the
total rate of trapping can be most easily calculated in the
reference system attached to the mobile trap. This reduces
. the problem to that of the trap being immobile and particles
f mmaT(z,t)Jd(Z)dZZ 1, 4o A possessing relative diffusion constdit=D++D,, ie.,

0 in the way suggested by Smoluchowski. As this trick can be
applied to homogeneous systems of any space dimensional-
ity, the results of Ref{7—10], where the immobile trap was

where J4(z) is an appropriate Jacobian ih dimensions. studied, can be immediately used to calculate the total reac-
Both of these lengths are related dg(z,t), the concentra- tion rateR(t) and characteristic lengthig(t) andxq,(t) for

tion of particlesA in the reference system in which the trap anyd.

is at rest. The results of Ref§7—10] where ar(z,t) and Using dimensional analysis and explicit calculations for
r,(t) were computed for the static trap éh=1,2,3 can be Da=Dr, we found that as— <, the mean concentration of
therefore easily applied to the case of mobile trap, yieldingP@rticlesA at any pointx asymptotically goes to a constant

r ()<t for d=1, r,(t)=t?2 for d=2, andr ,(t)~const value. We showed that this quantity is greater than zero ex-
for d= 3. Note the nonuniversal behavior of thalistance in  C€Pt when the trap or.the partmlgs are |_mmob|le. In th|.s sense
two-dimensional systems. Using the formasf(z,t) derived W€ can call the trapping of mobile particles by a mobile trap
in Refs.[7—10] we can also immediately conclude that for mefﬂqen.t. It is 'reaso'nable to expect this property to hold
arbitrary values oD, and Dy there isxpnct¥4 for d=1, @S0 in higher dimensions. _

Xomine (INY2 for d=2, andx,,~ const ford=3. Notg finally that. in our model the local reaction rate

The third characteristic length is the average distanc&(*:t) iS notproportional to the product of the local concen-
from the trap to the nearest partiole[6—10,24. However, ~ tration a(x,t) and the probability to find the trap at (x,t).
the problem of finding its properties when both the trap and! NS Implies that despite its simplicity, our system cannot be
particles A are mobile remains unsolved. Sindéx,t|y) described in terms of classical, mean-field theories.
turned out to be the essential quantity used to determine this

distance if eitheDt or D4 is zero[7,25], we hope that our ACKNOWLEDGMENTS
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