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Spatiotemporal properties of diffusive systems with a mobile imperfect trap
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We study analytically a one-dimensional system initially uniformly filled with diffusing particlesA, and a
single imperfect mobile trapT initially located at the origin,x50. For arbitrary values of diffusion constants
DA and DT , and any trapping rate constantV, we calculate exactly the total rate of trapping as well as the
asymptotic concentration ofA’s at x50. ForDA5DT we also analytically derive the local rate of trapping and
the concentration ofA’s at any pointx. Characteristic length scales and extensions to higher dimensions are
also discussed.@S1063-651X~98!04701-1#
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I. INTRODUCTION

The standard reaction rate theory for diffusion-limited
ementary reactions of typeA1B→C or A1B→B is based
on many simplifying assumptions@1–3#. In Smoluchowski’s
approach one assumes theB species to be so diluted that th
system can be considered as consisting of only asinglepar-
ticle B surrounded by a swarm of diffusing particlesA.
Moreover, theB is assumed to be animmobilesphere acting
on the surrounding, freely diffusing pointlike particlesA as a
perfect trap~i.e., upon collision of anA with the trap reaction
is certain to occur!. The reaction rate is computed from th
flux of A’s into the sphere. The case where the diffusi
constantsDA andDB of A’s andB’s, respectively, are non
zero is then treated by the concept of the relative diffus
constantD85DA1DB applied to the above-mentioned sy
tem with an immobile trapB. Although this theory was late
analyzed and improved by many researchers~for reviews see
@1–3#!, it has not been rigorously solved yet, and confiden
in it is based mainly on its agreement with a number
experiments@2#. It is therefore important to examine physic
effects associated with various assumptions this simpli
theory is founded on, especially after it was demonstra
@4,5# that in restricted~i.e., low-dimensional or disordered!
geometries Smoluchowski’s theory must be modified to
count for the self-segregation of the reactants.

In this paper we investigate a one-dimensional system
which there is asingle diffusing imperfecttrap ~henceforth
we shall denote it byT) surrounded by many diffusing par
ticles A initially uniformly filling up the whole available
space. Such geometry, with bothT and A’s mobile, was
already investigated numerically by Schoonoveret al. @6#,
who focused on the problem of determining the asympto
properties of the distance between the trap and the nea
neighbor particleA. In the present study, in turn, we conce
trate on examining spatiotemporal properties of such s
tems. We study analytically two problems: what is the tim
evolution of the mean concentration ofA’s at any pointx,
and what is the reaction~or trapping! rate at timet. We
determine both the local and total rate of trapping, which
denote byR(x,t) andR(t), respectively. Moreover, defining
the trap absorptivityV as a parameter ranging between p
571063-651X/98/57~1!/237~7!/$15.00
-

n

e
f

d
d

-

in

c
st-

s-

e

-

fect trapping and no trapping, we also examine the r
played by another of Smoluchowski’s assumptions that re
tion at the trap is inevitable.

Our study extends the well-examined case of animmo-
bile, perfect or imperfect trap@5,7–11# or traps @11–13#.
However, due to mathematical complexity, only a few r
sults related to the case ofmobile traps are available, and
most of them deal with the problem of determining the s
vival probability of mobile particlesA placed among ran-
domly distributed diffusing traps@14#. An interesting model
with a variable number of mobile traps was recently stud
by Sánchezet al. @15#. In addition to this, the role of the
A1T→T reactions with mobile trapsT in the diffusion-
limited fluorescence quenching in liquids was investiga
by Lianos and Argyrakis@16#.

The paper is organized as follows. In Sec. II, starting fro
a discrete description, we define the model in the continu
formalism. In Sec. III, using a coordinate system in whi
the trap is at rest, we calculate rigorously the total rate
trappingR(t) and the concentration of particlesA at a dis-
tancez from the trap,aT(z,t). These calculations are carrie
out for arbitrary values ofV, DT , DA , z, and t. In Sec. IV
we return to the laboratory coordinate system in which b
T and A’s are mobile. Using it we derive formulas for th
concentrationa(x,t) of particlesA and the local reaction rate
R(x,t). The key quantity employed to computea(x,t) in this
limit is f (x,tuy), the conditional concentration of particlesA
at sitex provided that at the same timet the trap is located a
y. We calculate its explicit asymptotic form for any values
DT and DA . We derive a general expression fora(x,t) for
DA5DT , and find its form atx50, the initial location of the
trap, for arbitrary values of diffusion constants. We pro
that in the long-time limita(x,t) converges to aconstant,
positivevalue depending only onDT andDA , which means
that if both the trapT and particlesA are mobile, the trap-
ping becomes inefficient. In Sec. V we present results of
numerical simulations of a discrete model, which turn out
be in excellent agreement with our theory derived for co
tinuous space and time. In Sec. VI we investigate asympt
properties of the depletion zone formed between the mo
trap T and particlesA. Finally, Sec. VII is devoted to con
clusions.
237 © 1998 The American Physical Society
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238 57ZBIGNIEW KOZA AND HAIM TAITELBAUM
II. THE MODEL

Consider a one-dimensional lattice with a lattice const
lA . At time t50 a single trapT is placed atx50, and a
swarm of diffusing particlesA is uniformly distributed at the
lattice sitesxj5 j lA , j 561,62, . . . , so that A’s can be
found on both sides of the trap. The initial concentration
particlesA will be denoted byr0. The evolution of the sys-
tem is governed by the following rules. At subsequent int
vals t each particleA, as well as the trapT, performs a
random jump. The jump length of particlesA is equal to the
lattice constantlA , and so their locations are limited to th
lattice sites. However, because we want to be able to c
sider systems with arbitrary values of the ratioDT /DA , and
since diffusion constants are directly related to the ju
lengths, we assume that the jump length of the trapT, lT ,
can assumeanynonnegative value. Although the same effe
could be achieved by a physically more realistic assump
that the trapT and particlesA have different jump rates an
the same jump lengths, such modification would lead to
necessary complications in both analytical and numer
analyses of the problem; we expect the long-time behavio
the system to depend on the values of diffusion consta
but not on the microscopic details of the jumps. We a
assume that particlesA do not interact among themselves
any way, so it is possible to find many of them at the sa
site at a time. However, upon contact with the trap, partic
A may react with it and be removed from the system. T
reaction probability will be denoted byk ~0<k<1!. The case
k51 corresponds toT being a perfect trap, andk50 to the
absence of reaction. We assume that the reaction is the
interaction betweenT andA’s. Therefore, fork,1, not only
can particles and the trap coexist at the same lattice site
it is possible for them to jump over each other without a
interaction. This assumption implies also that the motion
the trap is independent of the locations and velocities
particlesA.

To investigate the evolution of this system we introdu
the conditional concentration of particlesA, f (x,tuy), de-
fined as the expected number ofA’s that at timet can be
found at sitex provided that at this time the mobile trapT is
located aty. In the absence of reaction, i.e., ifxÞy or k50,
the master equation reads

f ~x,t1tuy!5
1

4
@ f ~x2lA ,tuy2lT!1 f ~x2lA ,tuy1lT!

1 f ~x1lA ,tuy2lT!1 f ~x1lA ,tuy1lT!#.

~1!

This equation expresses the fact that on average only ha
A’s from x2lA or x1lA will move in a single time stept
to x, and only in half of the systems in the ensemble w
their motion be accompanied by the trapT arriving aty from
y2lT or y1lT .

In the long-time limit Eq.~1! can be approximated by th
standard diffusion equation with coefficientsDT5lT

2/2t and
DA5lA

2/2t. However, forx5y andk.0 one must add to it
an appropriate term that will account for the reaction at
trap. It is very difficult to write such a term precisely in th
discrete formalism for arbitrary values oflT , lA, and t,
t
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especially whenlT andlA are incommensurate. Therefor
although discrete formulation of the problem is directly r
lated to many physical phenomena, it is practically intra
table analytically. However, as we expect the reaction te
to be proportional tof for x5y and vanish atxÞy, we
conclude that the equation forf (x,tuy) in the continuous
formalism, which is more amenable to rigorous, analyti
methods, takes on the form

] f

]t
5DA

]2f

]x2
1DT

]2f

]y2
2Vd~x2y! f , ~2!

where V is the trapping rate constant ranging from 0~no
trapping! to ` ~perfect trapping!. Once we have compute
f (x,tuy), the expected concentrationa(x,t) of particlesA at
(x,t) can be calculated from

a~x,t !5E
2`

`

f ~x,tuy!dy. ~3!

Note that although we study a one-dimensional syste
our mathematical treatment is carried out in a tw
dimensional space, withx andy treated asindependentvari-
ables and the trapping occurring along the liney5x. As we
shall also work in two different coordinate systems, in ord
to avoid confusion we adopt a convention thatx always de-
notes positions of particlesA, y refers to the position of the
trap T, andz denotes the relative distance between the t
and particlesA; both x and y are used only in a laborator
reference system where bothT andA’s are mobile, whereas
z is used only in the coordinate system in which the trap is
rest.

We expect both formalisms, the continuous one and
discrete one, to give the same results in the long-time lim
As we will show below, in this limit the solutions of Eqs.~2!
and ~3! become independent ofV and converge to those
obtained in the limitV→`, unlessV50. Similarly we ex-
pect that the values off (x,tuy) in the discrete formulation of
the problem asymptotically converge to those withk51,
unlessk50. Presumably there is no direct relation betwe
other values ofk andV.

In the next two sections we shall concentrate on solv
the continuous problem with the initial state given by

f ~x,t50uy!5r0d~y!, ~4!

which corresponds to the uniform distribution ofA’s, and the
trap located at the origin. We will also present results
computer simulations of the discrete model, which will e
able us to compare the results obtained for the two differ
models at short times and to investigate the transition of
discrete system to the long-time limit.

III. COORDINATE SYSTEM WITH THE TRAP AT REST

The reaction rate at the trap can be calculated most ea
in the coordinate system in which the trap is at rest. Cons
now such a coordinate system with the initial state made
of only oneparticleA located at a distancez0 from the trap.
Let p(z,t) denote the probability of finding it atz at time t.
Because in this reference systemA performs a random walk
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57 239SPATIOTEMPORAL PROPERTIES OF DIFFUSIVE SYSTEMS . . .
with the relative diffusion constantD85DT1DA , and can
be trapped only upon arriving atz50, the evolution of
p(z,t) is governed by an analog of Eq.~2!:

]p~z,t !

]t
5D8

]2p~z,t !

]z2
2Vd~z!p~z,t !. ~5!

This equation was already used@17,18# to study particles
diffusing in a one-dimensional system in the presence o
single, immobile, imperfect trap located at the origin of th
system (z50), and the explicit form ofp(z,t) subject to the
initial condition p(z,0)5d(z2z0) was found to be given by
@18#

p~z,t !5
1

A4pD8t
expS 2

~z2z0!2

4D8t
D

2
h

2
expS 2

~ uzu1uz0u!2

4D8t
D FS hAD8t1

uzu1uz0u

A4D8t
D ,

~6!

whereF(x)[exp(x2)erfc(x), erfc(x)[2p21/2*x
`exp(2h2)dh ,

andh[ 1
2 V/D8. Notice now that due to linearity and homo

geneity of Eq.~5!, its solution for arbitrary initial conditions
can be obtained as the superposition of solutions of type~6!.
After some algebra we thus conclude that if particlesA are
initially uniformly distributed in the system with some con
centrationr0, then at timet their concentrationaT(z,t) mea-
sured in the reference system of the trap is given by

aT~z,t !5r0FerfS uzu

A4D8t
D

1expS 2z2

4D8t
D FS hAD8t1

uzu

A4D8t
D G . ~7!

In the limit h→`, which corresponds toV→`, we thus
have

aT~z,t !5r0erfS uzu

A4~DT1DA!t
D . ~8!

An interesting feature of Eq.~7! is that the limit h→` is
mathematically similar tot→` with z/At fixed, and both
yield the same result~8!. Consequently, in the long-tim
limit, for any finite reaction rateV, the profile of particlesA
in the reference system of the mobile trap eventually
proaches that of the perfect trap.

The immediate consequence of Eq.~7! is that the ex-
pected numberM (t) of particlesA that have reacted by tim
t is given by

M ~ t !5E
2`

`

@aT~z,0!2aT~z,t !#dz

52r0@h21F~hAD8t !12AD8t/p2h21#. ~9!

For the perfect trap (h→`) or in the long-time limit we have
a

-

M ~ t !54r0Ap21~DT1DA!t. ~10!

Hence the total trapping rate at timet, R(t)5dM(t)/dt,
reads

R~ t !52hr0D8F~hAD8t !5VaT~0, t !, ~11!

which asymptotically simplifies to

R~ t !52r0ADT1DA

pt
. ~12!

The above formulas rigorously confirm the conjecture o
Schoonoveret al. @6# that asymptoticallyM (t);t1/2 and
R(t);t21/2, and are consistent with the results of Ref.@9#
obtained for the particular caseDT50. The plots ofR(t)
obtained for DA5DT51, r051, and h50.01, 0.5, and
h→` are presented in Fig. 1. Note that initially
R(t)'2hr0D8, andR(t) converges to the form given in Eq.
~12! for t*1/(h2D8).

IV. LABORATORY COORDINATE SYSTEM

A. Transition to the long-time limit

Although it is possible to write down the rather compli
cated propagator for Eq.~2!, integrals that must then be com-
puted to evaluatef (x,tuy) or a(x,t) cannot be worked out in
a closed form except when one of the diffusion constan
vanishes.

It is possible, however, to derive in a closed form th
long-time asymptotics off (x,tuy) for any values ofV, DT ,
andDA . To this end notice that the ratioa(x,t)/r0 is dimen-
sionless andDT /DA , x/ADTt, andVAt/DT are the only mu-
tually independent dimensionless combinations ofx, t, DT ,
DA , andV. Therefore,a(x,t) must assume the form

a~x,t !5r0F~DT /DA ,x/ADTt,VAt/DT! ~13!

FIG. 1. The total rate of trappingR(t) for h→` ~solid line!,
h50.5 ~dot-dashed line!, andh50.01 ~dashed line!, plotted using
Eq. ~11!. Other parameters areDA5DT5r051.
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240 57ZBIGNIEW KOZA AND HAIM TAITELBAUM
for which the limits V→` and t→`, x/At5const are
equivalent. Therefore, to investigate the long-time behav
of the system described by Eq.~2! with any nonzeroV it
suffices to concentrate on the limiting caseV→` of the
perfect trap, which we shall do henceforth. This scaling fo
reveals also two important properties ofa(x,t) atx50. First,
a(x,t)/a(0, t)→1 ast→`, for anyx. Second, in the limit of
the perfect trap,V→`, a(0, t) must be independent oft.
Later we shall confirm these conclusions by explicit calcu
tions carried out for the caseDA5DT .

B. Reformulation of the problem

If V→`, upon contact with the trap, particlesA inevita-
bly react. Therefore, the problem of solving Eq.~2! reduces
in this limit to the one of solving the standard diffusion equ
tion

] f

]t
5DA

]2f

]x2
1DT

]2f

]y2
~14!

with the boundary condition

x5y⇒ f ~x,tuy!50 ~15!

imposed by the instantaneous reaction atx5y.
Because the reaction renders the solutions of Eq.~14!

nonanalytic along the liney5x, it is convenient to solve Eqs
~14! and ~15! with the initial state composed of particlesA
uniformly distributed with concentrationr0 only on a half-
line x.0,

f 1~x,t50uy!5r0H~x!d~y!, ~16!

where H(x) denotes the Heaviside step function, and
added the index ‘‘1’’ tof to distinguish it from the solution
obtained for the full initial state~4!, which will be given
below.

Equations~15! and ~16! imply

x<y⇒ f 1~x,tuy!50, ~17!

so that Eq.~3! can be rewritten as

a1~x,t !5E
2`

x

f 1~x,tuy!dy, ~18!

wherea1(x,t) denotes the concentration ofA’s at (x,t) for
the initial distribution~16!.

C. The form of f 1„x,tzy… for x>y

AssumingDT , DA.0 we can symmetrize the form of Eq
~14! by replacingy with a new variable

ỹ[yADA /DT. ~19!

Now Eq. ~14! takes on a simpler form,

] f 1̃

]t
5DAS ]2f 1̃

]x2
1

]2f 1̃

] ỹ 2D ~20!

and the initial and boundary conditions turn into
r

-

-

e

f 1̃~x,t50u ỹ !5r0tan~a!H~x!d~ ỹ ! ~21!

and

ỹ5xtan~a!⇒ f 1̃~x,tu ỹ !50, ~22!

respectively, wherea is defined through

tan~a!5ADA /DT. ~23!

Equation~20! with the ‘‘half-line’’ initial state ~21! and
‘‘absorbing’’ boundary condition~22! can be solved by the
method of images@19#. The solution reads

f 1̃~x,tu ỹ !5F̃~x, ỹ ,t !2F̃~c1x1c2 ỹ ,c2x2c1 ỹ ,t !, ~24!

where

F̃~x,ỹ,t!5
r0

4ApDTt
expS2 ỹ2

4DAt
DerfcS 2x

A4DAt
D ~25!

denotes the solution of Eqs.~20! and~21! without taking into
account the boundary condition~22! imposed by trapping,
and c1 and c2 are some constants related toDT and DA
through

c1[cos~2a!5
DT2DA

DT1DA
,

c2[sin~2a!52
ADTDA

DT1DA
. ~26!

Note that in accordance with the method of images, the s
ond term on the right-hand side of Eq.~24! is simply the

image ofF̃(x, ỹ ,t) rotated by the angle 2a around the origin
of the x-y plane.

Upon return to the original variables we come to

f 1~x,tuy!5F~x,y,t !

2F~c1x1~12c1!y,~11c1!x2c1y,t !, ~27!

where

F~x,y,t !5
r0

4ApDTt
expS 2y2

4DTt DerfcS 2x

A4DAt
D . ~28!

Equation ~27! was derived for nonzero diffusion con
stants. One can easily verify that forDT50, DA.0

f 1~x,tuy!5r0d~y!erfS x

A4DAt
D H~x!, ~29!

and forDA50, DT.0

f 1~x,tuy!5
r0H~x!

A4pDTt
FexpS 2y2

4DTt D2expS 2~2x2y!2

4DTt D G .
~30!
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57 241SPATIOTEMPORAL PROPERTIES OF DIFFUSIVE SYSTEMS . . .
D. Concentration profiles and the local trapping rate

Having obtained the form off 1(x,tuy), we can now insert
Eq. ~27! into Eq. ~18!, and computea1(x,t). However, due
to the form of the upper limit in Eq.~18!, a1(x,t) can be
investigated analytically only whenDT5DA , which implies
c150. The explicit form ofa1(x,t) for this case reads

a1~x,t !5
1

4
r0Ferfc2~2j!2

2

Ap
exp~2j2!ierfc~2j!G , ~31!

whereierfc(z) [ *z
`erfc(h)dh 5 p21/2exp(2z2)2zerfc(z),

and

j[x/A4DTt. ~32!

The mean local rate of trapping,R1(x,t), is equal to the
average number of particlesA that are being trapped at (x,t),
and is defined through

]a1~x,t !

]t
5DA

]2a1~x,t !

]x2
2R1~x,t !. ~33!

Using Eq.~31! its explicit form forDT5DA is found to read

R1~x,t !5
1

2Ap
•

r0

t
exp~2j2!ierfc~2j!. ~34!

The scaling plot ofR1(x,t) will be given in Sec. IV E below.
Another interesting feature of the system is the dep

dence ofa1(x,t) at the origin (x50) on the values of the
diffusion constantsDT and DA . Using Eqs.~18!, ~27!, and
the integral

E
0

`

exp~2h2!erfc~ah! dh5
1

Ap
arctan~1/a! ~35!

we find that

a1~0, t !5
r0

2 F1

2
2

1

p

DT1DA

DT2DA
arctanS DT2DA

2ADTDA
D G . ~36!

We can see that the concentration of particlesA at the origin
is independent of time. Following our dimensional analysi
we conclude that this rather surprising effect can be obse
only in the limit of the perfect trap. In a more realistic case
systems containing an unperfect trap we expect thata1(0,t)
would depend on time, decreasing fromr0 at t50, and ap-
proaching the above result ast→`. In Sec. V we presen
simulation data for a discrete model that show that in t
case Eq.~36! is valid only in the long-time limit. Another
interesting feature ofa1(x,t) given by Eq. ~36! is that it
drops to 0 only if eitherDT or DA goes to 0. Moreover, it
actually depends only on the ratioDA /DT of the diffusion

constants, attains the maximal value1
2 r0( 1

2 21/p)'0.09r0

for DT5DA , and is not sensitive to interchanging the valu
of DT andDA . In Fig. 2 we present the semilogarithmic pl
of a1(0,t)/r0, computed from Eq.~36!, as a function of
DA /DT .
-

ed
f

s

s

E. Particles A on both sides of the trap

We can now generalize our results for the initial condition
~4! made up of particlesA uniformly distributed on both
sides of the trap simply by using the principle of superposi
tion, which implies that for any values ofDA andDT:

f ~x,tuy!5 f 1~x,tuy!1 f 1~2x,tu2y!, ~37!

a~x,t !5a1~x,t !1a1~2x,t !, ~38!

R~x,t !5R1~x,t !1R1~2x,t !. ~39!

Explicit forms of a(x,t) and R(x,t) for DA5DT can be
found using Eqs.~31! and ~34!, respectively. In Fig. 3 we
present a scaling plot ofR(x,t) and R1(x,t) for DA5DT .
R1(x,t) reflects the asymmetry of the initial condition~16!.

FIG. 2. The average relative concentration of particlesA at the
origin, a1(0,t)/r0, as a function ofDA /DT , plotted using Eq.~36!.
The maximal value is 1/421/2p'0.09.

FIG. 3. The scaling plot of the local trapping rate as a function
of j5x/A4DTt for DA5DT and two different initial conditions.
The solid line representsR(x,t)t/r0 @full initial condition ~4!# and
the dashed one showsR1(x,t)t/r0 @half-line initial condition~16!#.
x50 is the initial location of the trap.
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V. COMPUTER SIMULATIONS

To examine the properties of discrete systems we p
formed numerical simulations based on the cellular-autom
model of diffusion@20#. In our approachlA is fixed, but the
trap can perform off-lattice jumps of any lengthlT , hence
any value ofDT /DA can be studied in simulations. This go
is achieved by storing information about positions of p
ticles using integer arithmetic for particlesA, and floating-
point arithmetic for the mobile trapT. We used the full ini-
tial condition ~4! with the initial concentrationr050.8 and
the probability of reactionk51. The value ofDT /DA varied
from 0.1 to 10; we also made additional runs forDT50
~immobile trap!, andDA50 ~immobile particlesA). The lat-
tice sizeL varied from 5001 forDT /DA<1 to 12 001 sites
for DT /DA510. The results were averaged over 31 000
dependent runs.

The concentration of particlesA as seen from the refer
ence system attached to the mobile trap,aT(z,t), is depicted
in Fig. 4 for times t5103, 104, and 105, and DT /DA55.
This corresponds tolT5A5, i.e., to the trap performing off
lattice jumps. The solid lines were computed using Eq.~8!. A
similar plot of the concentration of particlesA in the labora-
tory coordinate system, forDT /DA51, is shown in Fig. 5;
here the solid lines were computed from Eqs.~38! and~31!.
In both cases the agreement between the continuous th
and the discrete simulations is excellent for all times.

The difference betweenaT(z,t) and a(x,t) is most pro-
nounced at the origin. WhileaT(0,t) asymptotically goes to
0, a(0,t) converges to a positive value. Figure 6 sho
a(0,t) as a function of time. We can see that initially
exhibits sharp fluctuations, caused by the discreteness o
system, but quickly approaches the asymptotic value
2a1(0,t)'0.1404, as predicted theoretically in Eq.~36! and
represented by the dashed line. Simulations performed
other values ofDT /DA gave similar results.

FIG. 4. The average concentration of particlesA seen from the
reference system attached to the trap at timet5103 ~circles!, 104

~squares!, and 105 ~diamonds!. The parameters areDT /DA55,
r050.8 and L510 001. The solid lines were computed fro
Eq. ~8!.
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VI. CHARACTERISTIC LENGTH SCALES

A number of recent papers have been devoted to the pr
lem of finding a quantitative description of the self
segregation observed in diffusion-limited bimolecular rea
tions @21,22#. In analogy with the Smoluchowski
approximation one can try to investigate a simplified pro
lem of segregation between a single trap and surround
particlesA. Three characteristic measures of this separati
were suggested, but explicit calculations were perform
only for the case where the trap is immobile.

One of these lengths, the so calledu distance, is defined
@8# as the distance from the trap to the pointr u at which the

FIG. 5. The average concentration of particlesA in the labora-
tory coordinate system. The parameters areDT /DA51, r050.8
and L55001. The solid lines were computed from Eqs.~38! and
~31!. Note the constant value ofa(x,t) at x50. As t→`, it be-
comes the value ofa(x,t) for any x.

FIG. 6. The average concentration of particlesA at the origin of
the system as a function of timet. The circles represent the results
of numerical simulations, and the dashed line corresponds to
theoretical value 2a1(0,t)'0.1404 computed from Eq.~36!. The
parameters areDT /DA52, r050.8, andL57001.
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concentrationaT(z,t) of A’s is equal to a given fraction
u ~0,u,1! of its bulk value. Another one, the characteris
minimum distancexmin , is defined@23# by requirement that
on average there should be exactly one particleA at a dis-
tancez<xmin from the trap,

E
0

xmin
aT~z,t !Jd~z!dz51, ~40!

where Jd(z) is an appropriate Jacobian ind dimensions.
Both of these lengths are related toaT(z,t), the concentra-
tion of particlesA in the reference system in which the tra
is at rest. The results of Refs.@7–10# where aT(z,t) and
r u(t) were computed for the static trap ind51,2,3 can be
therefore easily applied to the case of mobile trap, yield
r u(t)}t1/2 for d51, r u(t)}tu/2 for d52, and r u(t);const
for d53. Note the nonuniversal behavior of theu distance in
two-dimensional systems. Using the form ofaT(z,t) derived
in Refs. @7–10# we can also immediately conclude that f
arbitrary values ofDA and DT there isxmin}t1/4 for d51,
xmin}(lnt)1/2 for d52, andxmin;const ford53.

The third characteristic length is the average dista
from the trap to the nearest particleA @6–10,24#. However,
the problem of finding its properties when both the trap a
particles A are mobile remains unsolved. Sincef (x,tuy)
turned out to be the essential quantity used to determine
distance if eitherDT or DA is zero@7,25#, we hope that our
exact, general formula forf (x,tuy) will prove useful in solv-
ing this problem for arbitrary values ofDT andDA .
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VII. DISCUSSION AND CONCLUSIONS

We have studied the behavior of a one-dimensional s
tem initially uniformly filled with diffusing particlesA, and a
single diffusing trapT placed atx50. We found that the
total rate of trapping can be most easily calculated in
reference system attached to the mobile trap. This redu
the problem to that of the trap being immobile and partic
A possessing relative diffusion constantD85DT1DA , i.e.,
in the way suggested by Smoluchowski. As this trick can
applied to homogeneous systems of any space dimensio
ity, the results of Ref.@7–10#, where the immobile trap was
studied, can be immediately used to calculate the total re
tion rateR(t) and characteristic lengthsr u(t) andxmin(t) for
any d.

Using dimensional analysis and explicit calculations
DA5DT , we found that ast→`, the mean concentration o
particlesA at any pointx asymptotically goes to a constan
value. We showed that this quantity is greater than zero
cept when the trap or the particles are immobile. In this se
we can call the trapping of mobile particles by a mobile tr
inefficient. It is reasonable to expect this property to ho
also in higher dimensions.

Note finally that in our model the local reaction ra
R(x,t) is notproportional to the product of the local conce
tration a(x,t) and the probability to find the trapT at (x,t).
This implies that despite its simplicity, our system cannot
described in terms of classical, mean-field theories.
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